



## **XGS**Lab™

THE STATE OF THE ART OF THE ELECTROMAGNETIC SIMULATION FOR POWER, GROUNDING AND LIGHTNING PROTECTION SYSTEMS

XGSLab<sup>™</sup> Vs. CDEGS<sup>®</sup> GRID IN A MULTILAYER SOIL MODEL

[April 2018]



## Introduction

The program XGSLab includes the following module:

- GSA (Grounding System Analysis)

The program CDEGS® (developed by SES & Technologies ltd. Canada) includes many modules and in particular:

- MALT®

The two modules use the same hypothesis of equipotential electrodes and do not consider the drop voltages along conductors.

A comparison between GPR calculates with the two modules is related only to the calculation algorithm used to consider a multilayer soil model.



## Comparison between GSA and MALT®

In the following, some calculations taking into account a grid 60 x 60 m are shown in order to verify the agreement of the results obtained using GSA and MALT®.

Main input data:

- Soil models (resistivities and thickness) = see Table 1
- Grid size = 60 x 60 m
- Mesh size = 10 x 10 m
- Depth = 0.5 m
- Wire diameter = 10 mm
- Wires material: copper
- Elements length: 2.5 m
- Layout: see Figure 1

|       | Two Layers     |              | Three Layers   |              | Four Layers   |              | Five Layers   |              |
|-------|----------------|--------------|----------------|--------------|---------------|--------------|---------------|--------------|
| Layer | ρ <b>(</b> Ωm) | <i>h</i> (m) | ρ <b>(</b> Ωm) | <i>h</i> (m) | ρ <b>(Ωm)</b> | <i>h</i> (m) | ρ <b>(Ωm)</b> | <i>h</i> (m) |
| 1     | 100.00         | 2.00         | 100.00         | 2.00         | 100.00        | 2.00         | 100.00        | 2.00         |
| 2     | 50.00          | Infinite     | 50.00          | 6.00         | 50.00         | 6.00         | 50.00         | 6.00         |
| 3     |                |              | 200.00         | Infinite     | 200.00        | 15.00        | 200.00        | 10.00        |
| 4     |                |              |                |              | 75.00         | Infinite     | 20.00         | 15.00        |
| 5     |                |              |                |              |               |              | 300.00        | Infinite     |

Table 1: Multilayer Soil Models



Figure 1: Grounding system layout



The results obtained using GSA are reported out of brackets, the results obtained by using MALT® are into brackets, and differences are related to MALT® results:

- Two Layers:  $R_E$  = 0.4911 (0.4902)  $\Omega$  difference +0.18%
- Three Layers:  $R_E$  = 1.033 (1.030)  $\Omega$  difference +0.29%
- Four Layers:  $R_E$  = 0.7509 (0.7491)  $\Omega$  difference +0.24%
- Five Layers:  $R_E$  = 0.7963 (0.7927)  $\Omega$  difference +0.45%

The agreement between the results obtained with GSA and results obtained with MALT® is excellent.

The five layers soil model in particular represents a critical case because it includes adjacent soil layers with a great difference in resistivities.